Nonparametric Evidence on the Effects of Financial Incentives on Retirement Decisions

Day Manoli Andrea Weber
UT Austin & NBER University of Mannheim

June 2013
Introduction

- How do individuals adjust labor supply in response to wage variation? Answer important in many fields: macro, public finance, labor
 - Design of equilibrium models of the labor market
 - Normative tax policy analysis
 - Modeling labor supply
 - Dispute over magnitude of elasticities between micro and macro studies
- Recent literature has highlighted the importance of distinguishing between the intensive and extensive margin (Heckman 1993, Saez 2002, Chetty et al. 2012)
- We focus on retirement decision in response to anticipated benefits
- Contribution: quasi-experimental estimates of extensive margin labor supply elasticities
Introduction

- How do individuals adjust retirement entry to anticipated benefits?
 - Relevant for design of pension systems, reforms, explaining retirement patterns based on financial incentives
 - Complicated to disentangle incentives from various policies at retirement

- Research design based on a simple and salient incentive structure ‘independent’ from public pension system

- Exploit discontinuities in financial incentives along a dimension other than age

- Reduced form concept of extensive margin intertemporal substitution elasticities

- Nonparametric estimation method based on bunching estimators (Saez 2009, Chetty et. al 2012, Kleven and Waseem 2013)
Research Design

- Retirement rule in Austria: individuals who complete 10 years of tenure by retirement qualify for lump-sum payment from employer
 - Simple and salient rule
 - Benefits are fully anticipated but small relative to lifetime wealth
 - Focus on delay in retirement entry decisions
- Examine retirement behavior around the thresholds
 - Present graphical evidence on responses in retirement entry
 - Examine heterogeneity across population groups
- Examine magnitude of financial incentive
 - Contrast legislative incentive with estimated incentives from the data
- Elasticity relates retirement responses to financial incentives
Institutional Background I

Employer-provided retirement benefits within the severance pay system

- amount based on tenure at retirement
- mandated, lump-sum payments at retirement
- payments based on salary, not income / total compensation
- funds set aside by employers based on size of work force
- retirement is only voluntary separation that leads to payments
- severance payment is taxed at a constant, low rate of 6%
Severance Payments as Fraction of Annual Salary

Manoli and Weber

Financial Incentives at Retirement

June 2013
Government-provided pensions:

- Normal (statutory) retirement ages: 65 (men) & 60 (women)
- Early retirement ages: 60 (men) & 55 (women)
- Ages 55-59: retirement through disability pensions
- Replacement rates \(\approx 75\%\)
- Even with bonuses for retirement at older ages, system is still actuarially unfair for most individuals
Data

- **Austrian Social Security Database 1972 - 2006**
 - matched employer-employee census of private sector
 - complete earnings and employment histories
 - some demographic information on workers and firms

- **Income Tax Records 1994 - 2005**
 - employer reports to tax office at the end of the year
 - annual salary plus withholdings of social security contributions and income taxes
 - separate category for severance payments

- **Sample restrictions:**
 - non-construction workers
 - individuals still working at age 54
 - retiring within 6 months of last job
 - with uncensored job-tenure at retirement
 - retirements 1997-2005 matched to tax records

- **Sample:** 89,426 individual retirements with 6-28 years of tenure
Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std.dev</th>
</tr>
</thead>
<tbody>
<tr>
<td># Individuals</td>
<td>89,426</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Retirement Age</td>
<td>59.1</td>
<td>2.59</td>
</tr>
<tr>
<td>Tenure</td>
<td>15.66</td>
<td>6.10</td>
</tr>
<tr>
<td>Annual Earnings</td>
<td>29,327</td>
<td>12,949</td>
</tr>
<tr>
<td>Severance Pay</td>
<td>18,510</td>
<td>21,661</td>
</tr>
<tr>
<td>Implicit Tax Rate</td>
<td>0.81</td>
<td>0.21</td>
</tr>
<tr>
<td>Years of Employment</td>
<td>34.3</td>
<td>8.67</td>
</tr>
<tr>
<td>Years of Sick Leave</td>
<td>0.17</td>
<td>0.33</td>
</tr>
<tr>
<td>Fractions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disability Pension</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Early Retirement</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Old Age Pensions</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Empirical evidence on retirements
- Empirical evidence on severance payments
- Reduced form elasticity concept
- Estimation strategy
- Estimation results
- Discussion: interpretation and policy relevance
Distribution of Tenure on Retirement
Adjusting for Covariates
Distribution of Job Starts by Age

![Diagram showing distribution of job starts by age for women and men.](image)

- **Women**
 - 4000
 - 4500
 - 5000
 - 5500

- **Men**
 - 2000
 - 4000
 - 6000
 - 8000

Financial Incentives at Retirement

June 2013
Heterogeneity by Health Status

Healthy

![Graph showing the number of healthy individuals over years of tenure at retirement.]

Unhealthy

![Graph showing the number of unhealthy individuals over years of tenure at retirement.]

Years of Tenure at Retirement
Heterogeneity by Age and Gender

- Male, Retire Age < 60
- Male, Retire Age = 60
- Male, Retire Age > 60
- Female, Retire Age < 60
- Female, Retire Age = 60
- Female, Retire Age > 60

Years of Tenure at Retirement

Manoli and Weber ()

Financial Incentives at Retirement

June 2013 16 / 37
Distribution of Severance Payments, 10 Year Threshold

A1. Tenure 9 years

A2. Tenure 10 years

B1. Tenure 14 years

B2. Tenure 15 years
Distribution of Severance Payments, 15 Year Threshold

B1. Tenure 14 years

B2. Tenure 15 years
Distribution of Severance Payments, 20 Year Threshold

C1. Tenure 19 years

C2. Tenure 20 years

D1. Tenure 24 years

D2. Tenure 25 years
Distribution of Severance Payments, 25 Year Threshold

D1. Tenure 24 years

D2. Tenure 25 years
Distribution of Severance Payments

A. 15th Percentile

B. 25th Percentile

C. 50th Percentile

D. 75th Percentile

Manoli and Weber ()
Financial Incentives at Retirement
June 2013
Definition of Responder Sample, 10 Year Threshold

A1. 10 Year Threshold, Responders

A2. 10 Year Threshold, Non-Responders
Definition of Responder Sample, 15 Year Threshold

A1. 10 Year Threshold, Responders
A2. 10 Year Threshold, Non-Responders
B1. 15 Year Threshold, Responders
B2. 15 Year Threshold, Non-Responders
Definition of Responder Sample, 20 Year Threshold

C1. 20 Year Threshold, Responders

C2. 20 Year Threshold, Non-Responders
Definition of Responder Sample, 25 Year Threshold

C1. 20 Year Threshold, Responders

C2. 20 Year Threshold, Non-Responders

D1. 25 Year Threshold, Responders

D2. 25 Year Threshold, Non-Responders
Mean Severance Payments, Responder Sample

A. 10 Year Threshold

Years of Tenure at Retirement

Severance Pay Fraction

6 7 8 9 10 11 12 13

Mean Severance Payments, Responder Sample

B. 15 Year Threshold

- Severance Pay Fraction
- Years of Tenure at Retirement

Figure showing the relationship between severance pay fraction and years of tenure at retirement, with a 15-year threshold.
Mean Severance Payments, Responder Sample

C. 20 Year Threshold

- Severance Pay Fraction
- Years of Tenure at Retirement
- Graph showing data points and a trend line for severance pay fractions across different years of tenure at retirement, with a threshold at 20 years.

Manoli and Weber (2013)
Mean Severance Payments, Responder Sample

D. 25 Year Threshold

Severance Pay Fraction vs. Years of Tenure at Retirement

Manoli and Weber () Financial Incentives at Retirement June 2013 29 / 37
Participation Elasticity

Relate retirement responses to financial incentives

$$\varepsilon = \frac{\Delta p / p}{\Delta (1 - \tau) / (1 - \tau)}$$

- Retirement response: relative increase in retirements at the tenure thresholds $\Delta p / p$
- Financial incentive: increase in the implicit tax rate

$$\Delta (1 - \tau) / (1 - \tau) = \frac{SP \ast (1 - t^{sev})}{y \ast (1 - \tau)}$$
Estimating Changes in Retirement

Years of Tenure at Retirement

- Data
- Adjusted
- Counterfactual

Individuals

- 1000
- 800
- 600
- 400
- 200

7 8 9 10 11 12 13
Estimating Changes in Severance Pay

A. 10 Year Threshold
Participation Elasticities

<table>
<thead>
<tr>
<th>Threshold</th>
<th>10 Year N=21,729</th>
<th>15 Year N=19,724</th>
<th>20 Year N=15,588</th>
<th>25 Year N=18,461</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Retirement Probabilities</td>
<td>0.1414 (0.0233)</td>
<td>0.2424 (0.0277)</td>
<td>0.3777 (0.0350)</td>
<td>0.2123 (0.0251)</td>
<td>0.2434 (0.0157)</td>
</tr>
<tr>
<td>Change in Sev Pay Fraction</td>
<td>0.0620 (0.0046)</td>
<td>0.1056 (0.0058)</td>
<td>0.1202 (0.0049)</td>
<td>0.0514 (0.0070)</td>
<td>0.0848 (0.0028)</td>
</tr>
<tr>
<td>Change in Net-of-Tax Rate</td>
<td>0.2916 (0.0215)</td>
<td>0.4963 (0.0275)</td>
<td>0.5651 (0.0229)</td>
<td>0.2415 (0.0331)</td>
<td>0.3986 (0.0131)</td>
</tr>
<tr>
<td>Elasticity</td>
<td>0.4848 (0.0892)</td>
<td>0.4883 (0.0622)</td>
<td>0.6684 (0.0683)</td>
<td>0.8790 (0.1668)</td>
<td>0.6301 (0.0559)</td>
</tr>
</tbody>
</table>
Participation Elasticities by Gender

<table>
<thead>
<tr>
<th>Threshold</th>
<th>10 Year</th>
<th>15 Year</th>
<th>20 Year</th>
<th>25 Year</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Retirement Probabilities</td>
<td>0.0975 (0.0364)</td>
<td>0.1616 (0.0397)</td>
<td>0.3889 (0.0560)</td>
<td>0.1926 (0.0322)</td>
<td>0.2102 (0.0227)</td>
</tr>
<tr>
<td>Elasticity</td>
<td>0.3881 (0.1613)</td>
<td>0.3815 (0.1024)</td>
<td>0.7904 (0.1298)</td>
<td>0.8455 (0.2475)</td>
<td>0.6014 (0.0877)</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Retirement Probabilities</td>
<td>0.1729 (0.0288)</td>
<td>0.2999 (0.0375)</td>
<td>0.3713 (0.0421)</td>
<td>0.2375 (0.0415)</td>
<td>0.2704 (0.0203)</td>
</tr>
<tr>
<td>Elasticity</td>
<td>0.5380 (0.1051)</td>
<td>0.5502 (0.0762)</td>
<td>0.5990 (0.0737)</td>
<td>0.9106 (0.2691)</td>
<td>0.6495 (0.0795)</td>
</tr>
</tbody>
</table>
Discussion

- Reduced from elasticity not derived as a structural model parameter
- Independent from parametric assumptions and specific model context
- Robust to scaling assumptions that arise in a static model framework a la Saez (2010)
- Elasticity can be used for calibration in standard macro model, i.e. Rogerson and Wallenius (2009)
- But: under more general model assumptions extensive margin intertemporal labor supply elasticity is an ambiguous concept (Attanasio, 2012)
- Policy experiment
 - Government provides lump-sum bonus for retiring at age 61 or later
 - Implies increase in average implicit tax rate from 0.8 to 1.00
 - Increase in fraction retiring at age 61 by \(\hat{e} \times d\ln(1 - \tau) \)
Labor Supply Responses to Retirement Bonus at Age 61

Baseline - No Bonus
with Bonus at 61+, e=0.25
with Bonus at 61+, e=0.65

Manoli and Weber () Financial Incentives at Retirement June 2013 36 / 37
Conclusion

How much are individuals adjusting retirement decisions in response to anticipated benefits?

- Exploit policy discontinuities in severance pay at retirement in Austria
- Clear evidence of retirement responses: Pattern of spikes and dips in retirements by tenure
- Analyse relevance of financial incentives in the data
- Reduced form elasticity concept relating retirement responses to financial incentives

Results:
- Moderate elasticity of about 0.6, roughly three times larger than estimates based on legislative incentives
- Little evidence of heterogeneity across population of workers later in life-cycle
- Limited response to financial incentives in retirement decisions